
White Paper on How to Implement a Moore State Machine (MSM) on a

Programmable Logic Controller (PLC).

By Eric Rouse

A state machine is a powerful tool for controlling sequenced action. In fact, any system (a collection of

devices with input and/or output datasets) can be modeled by a collection of superimposed,

asynchronous, finite state machines.

More specifically, a Moore State Machine (MSM) is a particular state machine model comprised of a

finite amount of states. What makes an MSM unique is that its outputs are based on the current state,

not by input values. This makes it a very useful model in PLC programming.

Inputs are used to determine state transitions and outputs are activated based on state. This makes

programming a process as easy as breaking it into parts, diagramming it and implementing the diagram

in PLC code.

For purposes of illustration, let’s take a simple process of fixturing a part. The customer has asked that

after an operator loads the part the machine should see that it is datumed properly and then clamped in

place. Once clamped, a robot executes a drill/tap/debur operation. After the robot is done the part

needs to be ejected to the finished parts bin.

Step 1 – break into parts: This simple process must be broken into its smallest actionable parts.

1. We detect a part is loaded. This will require a part-present input.

2. We push the part against its datums. This will require air cylinder tappers, solenoid valve

outputs and cylinder position inputs.

3. We clamp the part. This will require a clamp cylinder, solenoid valve outputs and cylinder

position inputs.

4. We need to release the datum holds. Already have the required inputs/outputs from step 2.

5. We need to communicate with the robot that we are ready, and it needs to communicate with

us when it is done. This requires data passed over an Ethernet network.

6. We need to unclamp the part. Already have the required inputs/outputs from step 3.

7. We need to release put the part in the eject bin, this requires an eject conveyor. Requires motor

starter.

Step 2 – create a diagram: The state diagram is a simple way yet powerful way to document and define

the process. It is helpful to list the inputs that will transition from each state and the outputs that each

state will execute. See Figure 1 below.

Figure 1 - Moore State Diagram, Graphically Represented.

Part Datum and Clamp State Diagram

IMMEDIATE STOP

DISPLAY “immediate

stopped” message
Input: ESTOP Not OK

Input: Reset Push Button

RESET/

HOME

ROUTINE

Input: ESTOP OK

STATE 00:

RUN READY

Output: green

ready light

STATE 02:

CLAMP PART

Output: turn on

clamp cylinder,

turn off datum

cylinder(s)

STATE 01:

DATUM PART

Output: turn on

datum cylinder(s)

Input: part no longer present

Input: cylinder(s)

reached intended

position(s)

STATE 03:

READY FOR

ROBOT

Output: send ready

signal to robot

Input: done signal

from robot

STATE 04:

UNCLAMP PART

Output: turn off

clamp cylinder,

turn on eject

conveyor

Input: cylinder(s)

reached intended

position(s)

STATE 05:

EJECT PART

Output: Eject Part

onto conveyor

Input: cylinder(s)

reached intended

position(s)

Input: part present

Step 3 – implement the diagram in code. The PLC code implementation is what makes this diagram so

powerful. It is a simple latch/unlatch of transitions (Process_NewStates) based on inputs. Then, a simple

latch/unlatch of outputs based on states (Process_CurrentState). See Figure 2.

Figure 2 - Part of MSM Implemented in Ladder Logic

The real power of this implementation is the middle rung; it controls the actual transition, allowing only

one transition at a time. It is the gatekeeper that maintains the state machine structure and order.

Thus, the structure and simplicity of a Moore State Machine is quick to design and implement. And yet

its use and structure are dynamic and powerful. Break the process down, diagram and then code.

