
White Paper on How to Apply Encapsulation (an Object-Oriented Programming

(OOP) Idea) to Programmable Logic Controller (PLC) Software Development.

By Eric Rouse

The benefits of data encapsulation and abstraction (common attributes of object oriented

programming) have long been realized in more traditional programming environments. Languages like

Visual Basic, C# and Python provide PC programmers easy access to these benefits. But what about

PLCs? Is there a benefit for PLC programs to also follow these structures? If so, how can a sort of “object

oriented” approach to abstraction and encapsulation be implemented on PLC architectures?

At the outset, it must be noted that PLCs and PCs are very different pieces of hardware, designed to

solve very different problems. There are too many differences to list, but two are of primary importance

here:

1. PLCs are most often programmed in Ladder Logic, a graphical, rule-base programming language.

As such, it is fundamentally different from the procedural languages that are most often used on

PCs. In ladder logic, each logical element, called a “rung,” represents a rule that must be

followed. If certain input conditions are true, then the output conditions are applied. PC

programming usually takes an imperative approach, defining steps that programs must take to

reach a desired end.

2. Another fundamental difference between the PLC and PC environments is the matter of

memory management. Any PLC memory to be used during execution is reserved at compile

time. It has static memory and data types. A PC has the ability to allocate memory dynamically,

even while a program is executing.

OOP makes sense for PLCs because PLCs control literal, real-world objects. They read sensors, turn on

valves, start motors, communicate with databases; some can even execute complex servo motion. It

would be ideal if one could simply instantiate a “servo” object and all the necessary data structures

were implemented to control the servo. Unfortunately Ladder Logic is not designed to do that.

But, with careful implementation, Ladder Logic can have the OOP-like encapsulation abilities. Here,

encapsulation refers to the act of bringing all the control code and data structures necessary to control a

particular object or device into one place. Preferably with the ability to abstract, or hide away the

details, making the device code a kind of “black box.”

 Take, for instance, an analog input. Almost all analog inputs need to be scaled, and they are almost

always scaled linearly.

A common practice to accomplish this is to write a routine that has unique code for every single analog

input, as shown in Figure 1. This method is the one of the simplest forms of attempting to encapsulate

PLC code. It is a good start, but it has many problems. If there is a mistake in the code, there are many

places that need to be searched out and fixed. In this case there are 192 analog inputs. And if there is a

copy/paste/search/replace error it can be extremely difficult to track down.

Figure 1 - Repeating Code; Copy and Paste and Search and Replace

Another method is to separate the unique code into its own routine, then copy/paste/search/replace

the routine. This doesn’t solve either of the previous problems, but it does make code harder to read. As

such, it is not recommended.

A slight improvement to this method is to have a separate program and create copies of it using local

tags. At least in this case the code and data are kept together. So, encapsulation is attained, but it uses a

lot of PLC overhead for very limited gains.

The best way, at least on PLC platforms that offer the ability, is to write one’s own instructions. For

instance, RSLogix5000, from Rockwell Automation, offers the Add-On Instruction (AOI). So the analog

input scaling is done in a single program block, like in Figure 2.

Figure 2 - Add-On Instruction provides very good encapsulation.

This method solves all those problems. If the code is wrong, it need only be edited in one place. The rest

of the program references that AOI. Change it once, and it updates everywhere. Also, copy and paste

errors are bypassed.

There are further implications; often there are many objects on a machine or parts of a process that

operate/interact the same way. Motors are a good example. Every motor has interlocks, and starts and

stops in some way. The particulars of motor control code can be solved once, then implemented

everywhere. Figure 3 shows a single rung that starts 3 motors. This would normally take several lines of

code. Or, take a machine or process with multiple robots, for instance. All the code necessary for each

robot can be written, tested and then instantiated multiple times. This makes the code very

scalable/adaptive.

Figure 3 - Three motors controlled in a single rung.

Encapsulation is a great method for abstracting low-level details from main control code. It can be hard

to implement on PLC architectures, but there are some methods that can approximate it. The best

technique is to create one’s own instructions.

